

KI | Office Tables

Furnishing Knowledge®

Declaration Owner

ΚI 1330 Bellevue Street, Green Bay, WI 54302 www.ki.com

KI is a contract furniture company that manufactures innovative furniture and movable wall systems for educational, university, business and government market.

Products

Athens	Portico
Connection Zone	Toggle
nTandem	Trek
Pillar	Workup
Pirouette	Worksurface only

Functional Unit

The functional unit is one table, serving the function of a typical office table for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life. The reference unit used in the study is one complete table.

EPD Number and Period of Validity

SCS-EPD-08357 EPD Valid November 3, 2022 through November 2, 2027

Product Category Rule

Product Category Rule for Furniture, Except Seats and Mattresses Product Group Classification: UN CPC Codes 3812/3813/3814. International EPD® System. 2012:19. Version 2.01. August 2019.

Program Operator

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 +1.510.452.8000 | www.SCSglobalServices.com

Declaration Owner:	KI
Address:	1330 Bellevue Street, Green Bay, WI
Declaration Number:	SCS-EPD-08357
Declaration Validity Period:	EPD Valid November 3, 2022 through November 2, 2027
Program Operator:	SCS Global Services
Declaration URL Link:	https://www.scsglobalservices.com/certified-green-products-guide
Product:	Office Tables. See list on cover page.
LCA Practitioner:	Gerard Mansell, PhD., SCS Global Services
LCA Software:	OpenLCA VI. IU & ecoinvent V3.8
and data, according to ISO 14044 and ISO 14071	□ internal 🛛 external
LCA Reviewer:	Thomas Gloria, Ph.D., Industrial Ecology Consultants
Product Category Rule:	Product Category Rule for Furniture, Except Seats and Mattresses Product Group Classification: UN CPC Codes 3812/3813/3814. International EPD® System. 2012:19. Version 2.01. August 2019.
PCR Review conducted by:	Thomas Gloria Ph.D., Industrial Ecology Consultants
Independent verification of the declaration and data, according to ISO 14025 and the PCR	□ internal ⊠ external
EPD Verifier:	Thomas Cloria, Ph.D., Industria Ecology Consultants
Declaration Contents:	ABOUT KI

Disclaimers: This EPD conforms to ISO 14025, 14040 and 14044. The EPD owner has the sole ownership, liability, and responsibility for the EPD.

Scope of Results Reported: The PCR requirements limit the scope of the LCA metrics such that the results exclude environmental and social performance benchmarks and thresholds, and exclude impacts from the depletion of natural resources, land use ecological impacts, ocean impacts related to greenhouse gas emissions, risks from hazardous wastes and impacts linked to hazardous chemical emissions.

Accuracy of Results: Due to PCR constraints, this EPD provides estimations of potential impacts that are inherently limited in terms of accuracy.

Comparability: The PCR this EPD was based on was not written to support comparative assertions. EPDs based on different PCRs, or different calculation models, may not be comparable. When attempting to compare EPDs or life cycle impacts of products from different companies, the user should be aware of the uncertainty in the final results, due to and not limited to, the practitioner's assumptions, the source of the data used in the study, and the specifics of the product modeled.

EPD Validity: An EPD should provide current information, and may be updated if conditions change. The stated validity is therefore subject to the continued registration and publication at https://www.scsglobalservices.com/

ABOUT KI

At KI, we believe knowing our customers helps us serve them better. We listen. We observe. We understand that each customer has unique needs. So, we pride ourselves on helping our customers make smart contract furniture decisions by offering expert advice, design options and personalized solutions.

Since 1941, we've positioned KI as the contract furniture company that best understands the contract furniture industry and is committed to providing customers with the smart solutions. By targeting specific markets with solutions for business furniture, university furniture, educational furniture, healthcare furniture and government furniture, we can quickly respond to our customers' unique needs – including the choice to procure contract furniture according to what fits their ordering and fulfillment process. That's why we say we offer far more than furniture. We're Furnishing Knowledge.

PRODUCT DESCRIPTION

KI Office Tables are manufactured at an ISO 9001 facility in Bonduel, Wisconsin. A description of each product included in this EPD is shown below.

Athens tables bring people together, inspiring conversation and collaboration. Whether it's to grab a bite to eat or engage in lively conversation, the Athens table is perfect for cafes, lounges, student unions - anywhere people gather. Designed to complement virtually any decor, Athens cafeteria tables are available in a variety of sizes and finishes. Built to last, Athens bases are constructed of steel for superior wear versus cast-iron bases.

Connection Zone

Connection Zone's unique telescoping base supports change. Worksurfaces may be easily removed or added to a base - expanding or contracting work areas. Optional privacy screens, dividers and modesty panels enable users to define personal space and establish a higher degree of privacy in open, collaborative environments. Connection Zone Benching's innovative sliding worksurface offers easy access to power and the wire trough underneath the worksurface manages power cabling.

The InTandem training table is the easiest way to access power and data for worksurfaces. Technicians can access wires, while users remain at the tables. InTandem training tables can be configured back-to-back or side-by-side. The contemporary table design supports any training environment. InTandem training tables are built tough to endure the day-to-day abuse of training environments. Our quality craftsmanship is backed by a lifetime warranty.

Pillar tables are defined by clean lines, a simple leg, and a multitude of configurable top shapes. Simple and straightforward, Pillar tables provide a place to gather, an area to create, or a spot to focus. In education environments, Pillar tables empower learners to take an active role in their learning process. From elementary classrooms to corporate training rooms, users can arrange Pillar tables into endless configurations for that "just right" learning environment.

Pirouette

Designed by Giancarlo Piretti, the innovative articulating leg of Pirouette creates a leg-within-leg nesting solution unlike any other. As Pirouette's top is raised, the legs articulate. When in use, Pirouette's clean design profile sets it apart from standard nesting tables. Pirouette easily reconfigures and nests for simple storage and adaptability. Pirouette's unique design accommodates two-sided usage, giving ample leg room to those seated on either side of a table.

Portico

The clean, simple lines of the Portico table lend a uniform appearance to any room. Portico tables are affordable without sacrificing design options or durability. Portico tables are available in many shapes, sizes and leg styles, giving you the options to define the look and functionality of any environment. Optional casters allow the tables to move effortlessly and quickly. Colored end caps and trim pieces provide subtle accents or sharp contrasts. Specify Portico tables for an enjoyable, functional space at an economical price.

Toggle

Featuring value and versatility at its best, Toggle adjustable tables extend the benefits of electronically-modulated sit-stand work surfaces to everyone. Affordable features and durable design allow Toggle to transform the workplace with healthy flexibility and mass appeal. Toggle tables offer a wide-ranging height adjustment of 26 to 52 inches. Toggle's clean T-base design and absence of a low-hanging crossbar allow the table to be used from both sides, promoting user comfort and enhancing versatility.

Trek

Great design and superior functionality are hallmarks of Trek tables. Trek tables feature a modern look for any application. The angled profile of the Trek leg is a departure from typical floor-hugging bases. Oversized, two-toned glides and casters give the leg a dramatic finish. Unique edges offer subtle visual accents. For multi-purpose rooms that support conferencing or for training rooms with space issues, the flip top Trek table helps maximize limited storage space.

Workup

Movement is natural and necessary, and it should be encouraged in the workplace. Intuitive, height-adjustable work surfaces, such as KI's WorkUp® Adjustable Table, are the ideal solution. WorkUp delivers easy-to-use adjustability with a clean design and consistent profile. Within a classroom, library, or other learning environment, WorkUp offers the unique ability to adapt to users' needs and study styles. WorkUp provides a wide range of height-adjustability within an efficient statement of line.

Worksurface only

KI worksurfaces come in a wide variety of shapes, sizes, edge styles, and laminate options

PRODUCT SPECIFICATIONS

Product specifications of the KI Office Tables included in this EPD are shown in Table 1.

 Table 1. Product specifications of the KI Office Tables.

Product Name	Worksurface Dimension	Worksurface Area	Table Weight
	(in. x in.)	(sq. ft.)	(including packaging) (kg)
Athens	36.25 x 36.25	9.13	46.61
Connection Zone	30.25 x 36.25	7.62	57.10
InTandem	24.25 x 42.25	7.12	46.37
Pillar	36.25 x 36.25	9.13	42.04
Pirouette	30.25 x 60.25	12.7	67.01
Portico	36.25 x 36.25	9.13	42.29
Toggle	35.50 x 35.50	8.75	47.34
Trek	30.25 x 48.25	10.1	41.25
Workup	24.25 x 42.25	7.12	37.56
Worksurface only	36.25 x 36.25	9.13	43.89

MATERIAL COMPOSITION

Table 2. Material composition of the KI Office Tables and packaging. Results are shown on a mass basis (kg/unit) and as a percent of total. (Models: Athens, Connection Zone, InTandem, Pillar, Pirouette)

Material	Athens	Connection Zone	InTandem	Pillar	Pirouette
Product					
Darticloboard	16.4	16.4	15.3	16.4	28.6
Particleboard	54%	40%	51%	64%	56%
Stool	11.3	16.7	9.98	7.71	15.2
SIEEI	37%	41%	33%	30%	30%
Laminato	1.08	2.86	1.85	0.320	0.773
Laminate	3.6%	7%	6.1%	1.2%	1.5%
Diactics	1.08	2.86	1.85	0.320	0.773
FIDSUCS	3.6%	7%	6.1%	1.2%	1.5%
Othor	1.53	4.94	2.98	1.36	6.17
Other	5%	12%	9.9%	5.3%	12%
Total Draduct	30.4	40.9	30.1	25.8	50.8
Total Product	100%	100%	100%	100%	100%
Packaging					
Corrugato	1.40	1.40	1.40	1.40	1.40
Confugate	8.6%	8.6%	8.6%	8.6%	8.6%
Diactic	1.22	1.22	1.22	1.22	1.22
Plastic	7.5%	7.5%	7.5%	7.5%	7.5%
Wood	13.6	13.6	13.6	13.6	13.6
vvood	84%	84%	84%	84%	84%
Total Dealessing	16.2	16.2	16.2	16.2	16.2
Total Packaging	100%	100%	100%	100%	100%

Material	Portico	Toggle	Trek	Workup	Worksurface only
Product					
Darticlaboard	16.4	19.7	16.4	15.3	26.3
Particieboaru	63%	63%	66%	72%	95%
Stool	7.58	4.55	6.34	0.160	0.00
Steel	29%	15%	25%	0.75%	0%
Laminato	0.680	1.77	0.738	0.540	0.630
Lammate	2.6%	5.7%	2.9%	2.5%	2.3%
Diactics	0.680	1.77	0.738	0.540	0.630
PIdSUCS	2.6%	5.7%	2.9%	2.5%	2.3%
Othor	1.38	5.07	1.52	5.30	0.734
Other	5.3%	16%	6.1%	25%	2.7%
Total Droduct	26.1	31.1	25.0	21.3	27.7
	100%	100%	100%	100%	100%
Packaging					
Corrugato	1.40	1.40	1.40	1.40	1.40
Confugate	8.6%	8.6%	8.6%	8.6%	8.6%
Diactic	1.22	1.22	1.22	1.22	1.22
Plastic	7.5%	7.5%	7.5%	7.5%	7.5%
Wood	13.6	13.6	13.6	13.6	13.6
vv00u	84%	84%	84%	84%	84%
Total Packaging	16.2	16.2	16.2	16.2	16.2
Total Packaging	100%	100%	100%	100%	100%

Table 3. Material composition of the KI Office Tables and packaging. Results are shown on a mass basis (kg/unit) and as a percent of total. (Models: Portico, Toggle, Trek, Workup, Worksurface only)

PRODUCT LIFE CYCLE FLOW DIAGRAM

The diagram below is a representation of the most significant contributions to the life cycle of KI Office Tables.

LIFE CYCLE ASSESSMENT STAGES

The system boundary is cradle-to-grave and includes resource extraction and processing, product manufacture and assembly, distribution/transport, use and maintenance, and end-of-life. The diagram below illustrates the life cycle stages included in this EPD.

LIFE CYCLE IMPACT ASSESSMENT

Impact category indicators are calculated using the CML-IA and TRACI 2.1 characterization methods. TRACI 2.1 impact category indicators include global warming potential (100 years), acidification potential, smog potential, ozone depletion potential, and eutrophication potential. CML-IA impact category indicators include global warming potential (100 years), acidification potential, eutrophication potential, Photochemical Ozone Creation potential, ozone depletion potential, and abiotic resource depletion, in accordance with the PCR. In addition, an estimate of the impacts from land use are reported (based on the ReCiPe methodology) as are human toxicity and ecotoxicity impacts (based on the USEtox methodology). The PCR requires that several parameters be reported in the EPD, including resource use, waste categories and output flows, and other environmental information. The results for these parameters per declared unit are also included below. *Note - INA = Indicator Not Assessed*.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
	kg CO2 eq	67.6	35.8	19.0	122
Giobai warming	%	55%	29%	16%	100%
Acidification	kg SO2 eq	0.265	0.148	6.17x10 ⁻²	0.475
ACIOINCACION	%	56%	31%	13%	100%
Eutrophication (MI	kg (PO)4 eq	0.121	6.26x10 ⁻²	8.78x10 ⁻²	0.271
Eutrophication-Civil	%	45%	23%	32%	100%
Photochamical avidation	kg C ₂ H ₄ eq	2.73x10 ⁻²	9.57x10⁻³	2.69x10 ⁻³	3.95x10 ⁻²
Thotochemical oxidation	%	69%	24%	6.8%	100%
Ozona lavar daplation	kg CFC-11 eq	3.94x10 ⁻⁶	1.55x10 ⁻⁶	2.64x10 ⁻⁶	8.14x10 ⁻⁶
	%	48%	19%	32%	100%
Abiatic doplation (fassil fuels)	MJ	6.70×10 ⁻⁴	9.64x10⁻⁵	4.74x10 ⁻⁵	8.14x10 ⁻⁴
Abiotic depietion (lossil ideis)	%	82%	12%	5.8%	100%
Abiatic depletion	kg Sb eq	822	469	224	1,510
Abiotic depietion	%	54%	31%	15%	100%
TRACI					
Global warming	kg CO2 eq	66.8	34.7	18.5	120
	%	56%	29%	15%	100%
Acidification	kg N eq	0.280	0.150	7.29x10 ⁻²	0.502
Acidinication	%	56%	30%	15%	100%
Eutrophication	kg N eq	0.245	0.135	0.221	0.600
	%	41%	22%	37%	100%
Smog formation	kg O₃ eq	4.12	1.88	1.80	7.81
	%	53%	24%	23%	100%
Ozono doplation	kg CFC-11 eq	4.96x10 ⁻⁶	2.07x10 ⁻⁶	3.52x10 ⁻⁶	1.05x10⁻⁵
	%	47%	20%	33%	100%
Fossil fuel depletion	MJ surplus	74.4	56.1	32.2	163
	%	46%	34%	20%	100%
IPCC 2013					
Climate change - fossil	kg CO ₂ eq	66.6	31.7	16.5	115
	%	58%	28%	14%	100%
Climate change - biogenic	kg CO2 eq	11.1	10.3	12.6	34.0
Climate change biogenie	%	33%	30%	37%	100%
Climate change - land use and land	kg CO ₂ eq	0.107	3.24x10 ⁻²	6.13x10 ⁻³	0.146
transformation	%	74%	22%	4.2%	100%
Climate change - CO2 untake	kg CO2 eq	-13.4	-34.4	-6.35x10 ⁻²	-47.9
ennate change CO2 aptake	%	28%	72%	0.13%	100%
Other Indicators					
Human toxicity cancer	cases	3.91x10⁻⁵	2.29x10 ⁻⁶	1.17x10 ⁻⁶	4.25x10 ⁻⁵
haman coxicity, cancer	%	92%	5.4%	2.7%	100%
Human toxicity non-cancer	cases	1.52x10⁻⁵	8.56x10 ⁻⁶	3.79x10 ⁻⁶	2.76x10 ⁻⁵
Human toxicity, non-cancel	%	55%	31%	14%	100%
Freshwater ecotoxicity	PAF.m ³ .day	948,000	1.01x10 ⁶	485,000	2.44x10 ⁶
	%	39%	41%	20%	100%
Land use	species.yr	7.75x10 ⁻⁸	2.13x10 ⁻⁷	4.75x10 ⁻⁹	2.96x10 ⁻⁷
	%	26%	72%	1.6%	100%
Water use - AWARF	m ³	26.9	13.4	1.28	41.6
	%	65%	32%	3.1%	100%

Table 4. Life Cycle Impact Assessment Results by life cycle phase for the KI Athens Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Table 5. Resource use and waste flows by life cycle phase for the KI Athens Office Table. Results are shown for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	188	387	2.43	577
renewable primary energy resources used as raw materials	%	33%	67%	0.42%	100%
Use of renewable primary energy resources used	MJ	0.00	0.00	0.00	0.00
as raw materials	%	0%	0%	0%	0%
Total use of renewable primany energy resources	MJ	198	415	2.48	615
Total use of renewable primary energy resources	%	32%	67%	0.4%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy resources	MJ	868	479	227	1,570
	%	55%	30%	14%	100%
	kg	18.4	0.00	0.00	18.4
Use of secondary materials	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lice of pat frach water	m ³	2.99	1.75	0.154	4.90
Ose of her nesh water	%	61%	36%	3.1%	100%
Wastes					
Hazardous wasto disposod	kg	2.83x10 ⁻³	3.61x10 ⁻⁴	5.94x10 ⁻⁴	3.78x10 ⁻³
liazai ubus waste disposed	%	75%	9.5%	16%	100%
Non-hazardous waste disposed	kg	18.9	9.35	43.3	71.6
Non nazardous waste disposed	%	26%	13%	60%	100%
High-level radioactive waste	kg	2.01x10 ⁻⁴	3.49x10 ⁻⁵	1.09x10 ⁻⁵	2.47x10 ⁻⁴
High level radioactive waste	%	81%	14%	4.4%	100%
Intermediate and low-level radioactive waste	kg	1.67x10 ⁻³	3.72x10 ⁻⁴	1.48x10 ⁻³	3.52x10 ⁻³
	%	47%	11%	42%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for recycling	kg	0.00	0.00	5.03	5.03
Matchaistorrecycling	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Table 6. Life Cycle Impact Assessment Results by life cycle phase for the KI Connection Zone Office Table. Results are shown for one table

 maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test.

 Results are equivalent for a 15-year Reference Service Life.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
	kg CO ₂ eq	123	44.9	25.6	194
Global warming	%	64%	23%	13%	100%
	kg SO ₂ eq	0.515	0.185	7.59x10 ⁻²	0.776
Acidification	%	66%	24%	9.8%	100%
	kg (PO)4 eq	0.211	7.87x10 ⁻²	0.105	0.395
Eutrophication-CML	%	54%	20%	27%	100%
	kg C ₂ H ₄ eq	5.26x10 ⁻²	1.14x10 ⁻²	3.58x10 ⁻³	6.76x10 ⁻²
Photochemical oxidation	%	78%	17%	5.3%	100%
Ozone layer depletion	kg CFC-11 eq	8.82x10 ⁻⁶	1.88x10 ⁻⁶	3.24x10⁻ ⁶	1.39x10 ⁻⁵
	%	63%	13%	23%	100%
	MI	1.31x10 ⁻³	1.09x10 ⁻⁴	5.82x10 ⁻⁵	1.47x10 ⁻³
Abiotic depletion (fossil fuels)	%	89%	7.4%	3.9%	100%
	kg Sb eq	1,650	569	275	2,490
Abiotic depletion	%	66%	23%	11%	100%
TRACI					
	kg CO2 eq	122	43.5	24.7	190
Global warming	%	64%	23%	13%	100%
	kg N ea	0.538	0.186	8.97x10 ⁻²	0.813
Acidification	%	66%	23%	11%	100%
Eutrophication	kg N ea	0.421	0.171	0.263	0.854
	%	49%	20%	31%	100%
		8.07	2.25	2 21	12.5
Smog formation	% %	64%	18%	18%	100%
		1 08×10 ⁻⁵	2 50×10-6	/ 31×10 ⁻⁶	1 76×10-5
Ozone depletion	16 Kg CIC-II Eq	61%	1.40%	2/06	100%
	Misurplus	169	67.5	24%	276
Fossil fuel depletion	1vij Sulpius 06	61%	2/1%	1/06	100%
IPCC 2012	70	0170	2470	1470	100%
IFCC 2013	ka COa oa	177	20.5	21 5	100
Climate change - fossil	kg CO2 Eq	6706	29.0	1.06	100%
	70 kg (O- og	11 7	12.6	15.4	20.7
Climate change - biogenic	kg CO2 Eq	2004	12.0	2004	100%
	%0 kg CO- og	0.102	52% 2.21v10-2	29%0 7 EGy10-3	0.222
climate change - land use and land	kg CO2 Eq	0.195	1.406	2.20%	100%
	70 kg (O- og	125	24.9	J.∠70 7 92v10-2	100%
Climate change - CO2 uptake	kg CO2 Eq	-12.0	-54.0	-7.05×10-	-47.4
Other Indicators	90	20%	/ 5%	0.17%	100%
	62505	5 90v10-5	2 66×10-6	164,10-6	6 22 10-5
Human toxicity, cancer	Cases	020%	4.206	2.6%	100%
	90	95% 2.67v10-5	4.2%	Z.0%	1.00%
Human toxicity, non-cancer	Cases	2.07X10-	1.09X10-	0.40X TU °	4.41X10
	%	00% 1.70v106	20% 1.20v106	15%	2.0.4v1.06
Freshwater ecotoxicity	PAF.MP.day	1.70X10°	1.32X10°	917,000	3.94X10°
	%	43% 7 F2x10-8	2 1Ev10-7	Z3%	2.06×10-7
Land use	species.yr	7.52X10 ⁻⁰	2.15X10"	5.82X1U-9	2.96X10-
	% ~~ 3	25%	/ 3%	2%	71.0
Water use - AWARE	04	24.3	13.8	1.01	100%
	70	/0%	22%0	2.2%	100%

Table 7. Resource use and waste flows by life cycle phase for the KI Connection Zone Office Table. Results are shown for one table

 maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test.

 Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	216	394	3.01	613
renewable primary energy resources used as raw materials	%	35%	64%	0.49%	100%
Use of renewable primary energy resources	MJ	0.00	0.00	0.00	0.00
used as raw materials	%	0%	0%	0%	0%
Total use of renewable primary energy	MJ	226	422	3.07	651
resources	%	35%	65%	0.47%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy	MJ	1,750	580	278	2,610
resources	%	67%	22%	11%	100%
	kg	15.3	0.00	0.00	15.3
Ose of secondary materials	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lice of pat frach water	m ³	5.76	2.16	0.191	8.11
Ose of field fresh water	%	71%	27%	2.4%	100%
Wastes					
Hazardous wasto disposod	kg	4.50x10 ⁻³	4.29x10 ⁻⁴	7.30x10 ⁻⁴	5.66x10 ⁻³
liazai dous waste disposed	%	80%	7.6%	13%	100%
Non-hazardous waste disposed	kg	32.6	12.0	53.1	97.7
Non nazardous waste disposed	%	33%	12%	54%	100%
High-level radioactive waste	kg	3.57x10 ⁻⁴	3.67x10 ⁻⁵	1.36x10 ⁻⁵	4.07x10 ⁻⁴
	%	88%	9%	3.3%	100%
Intermediate and low-level radioactive waste	kg	3.35x10 ⁻³	3.98x10 ⁻⁴	1.81x10 ⁻³	5.55x10 ⁻³
	%	60%	7.2%	33%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for recycling	kg	0.00	0.00	6.12	6.12
	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
Clobal warming	kg CO2 eq	74.8	35.6	20.4	131
Global warming	%	57%	27%	16%	100%
	kg SO2 eq	0.307	0.147	6.17x10 ⁻²	0.516
Acidification	%	59%	29%	12%	100%
Extra chiestica CNU	kg (PO)4 eq	0.129	6.22x10 ⁻²	9.21x10 ⁻²	0.284
Eutrophication-CML	%	46%	22%	32%	100%
	kg C ₂ H ₄ eq	3.20x10 ⁻²	9.52x10 ⁻³	2.87x10 ⁻³	4.44x10 ⁻²
Photochemical oxidation	%	72%	21%	6.5%	100%
	kg CFC-11 eq	5.15x10 ⁻⁶	1.55x10 ⁻⁶	2.63x10 ⁻⁶	9.33x10 ⁻⁶
Ozone layer depletion	%	55%	17%	28%	100%
	MJ	8.14x10 ⁻⁴	9.61x10 ⁻⁵	4.73x10 ⁻⁵	9.57x10 ⁻⁴
Abiotic depletion (fossil fuels)	%	85%	10%	4.9%	100%
	kg Sb eq	1,010	466	223	1,700
Abiotic depletion	%	59%	27%	13%	100%
TRACI					
	kg CO ₂ eq	73.9	34.5	19.7	128
Global warming	%	58%	27%	15%	100%
Acidification	kg N ea	0.320	0.149	7.29x10 ⁻²	0.542
	%	59%	28%	13%	100%
Eutrophication	kg N ea	0.258	0.134	0.232	0.624
	%	41%	21%	37%	100%
	kg Oaled	473	1.87	1.80	8 4 1
Smog formation	%	56%	22%	21%	100%
	kg CFC-11 eq	6 27x10 ⁻⁶	2.06x10 ⁻⁶	3 50x10 ⁻⁶	1 18x10 ⁻⁵
Ozone depletion	%	53%	17%	30%	100%
	MI surnlus	103	55.8	32.1	191
Fossil fuel depletion	%	54%	29%	17%	100%
IPCC 2013	70	5470	2570	1770	10070
	kg CO ₂ eq	74.0	31.5	17.2	123
Climate change - fossil	%	60%	26%	14%	100%
	kg CO2 eq	914	10.3	13.5	32.9
Climate change - biogenic	% %	28%	31%	41%	100%
Climate change - land use and land	kg CO2 eq	0.101	3 24×10 ⁻²	6 13x10 ⁻³	0 140
transformation	%	72%	23%	4.4%	100%
	kg CO2 eq	-10.9	-34.4	-6 36x10 ⁻²	-45.3
Climate change - CO2 uptake	% CO2 CQ	24%	76%	0.14%	100%
Other Indicators	70	2470	7070	0.1470	10070
	Cases	3 56x10 ⁻⁵	2 28x10 ⁻⁶	1 19x10 ⁻⁶	3 90x10 ⁻⁵
Human toxicity, cancer	%	91%	5.8%	3.1%	100%
	C3565	1.64×10 ⁻⁵	8.51v10 ⁻⁶		2 98v10-5
Human toxicity, non-cancer	0%	55%	29%	16%	100%
	PAE m ³ day	1.06v106	1 00×106	565,000	2 62×106
Freshwater ecotoxicity	0/2	40%	220%	220%	100%
	500 cios vr	40% 6 36v10-8	2 12/10-7	ZZ70 A 74×10-9	2 82 10-7
Land use	species.yi	2204	2.13X10	4.74XTU*	100%
	⁷⁰	23%	12.2	1.7%	50.4
Water use - AWARE	06	71%	76%	2.6%	100%

Table 8. Life Cycle Impact Assessment Results by life cycle phase for the KI InTandem Office Table. Results are shown for one table

 maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test.

 Results are equivalent for a 15-year Reference Service Life.

Table 9. Resource use and waste flows by life cycle phase for the KI InTandem Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	166	387	2.45	555
renewable primary energy resources used as raw materials	%	30%	70%	0.44%	100%
Use of renewable primary energy resources	MJ	0.00	0.00	0.00	0.00
used as raw materials	%	0%	0%	0%	0%
Total use of renewable primary energy	MJ	175	415	2.50	592
resources	%	30%	70%	0.42%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy resources	MJ	1,070	477	226	1,770
	%	60%	27%	13%	100%
Use of secondary materials	kg	16.7	0.00	0.00	16.7
	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lice of pat frach water	m ³	3.69	1.74	0.155	5.59
Ose of field fresh water	%	66%	31%	2.8%	100%
Wastes					
Hazardous waste disposed	kg	2.68x10 ⁻³	3.59x10 ⁻⁴	5.93x10 ⁻⁴	3.63x10 ⁻³
	%	74%	9.9%	16%	100%
Non-hazardous waste disposed	kg	18.4	9.29	43.8	71.4
Non nazardous waste disposed	%	26%	13%	61%	100%
High-level radioactive waste	kg	2.21x10 ⁻⁴	3.49x10⁻⁵	1.10x10 ⁻⁵	2.67x10 ⁻⁴
	%	83%	13%	4.1%	100%
Intermediate and low-level radioactive waste	kg	1.85x10 ⁻³	3.71x10 ⁻⁴	1.47x10 ⁻³	3.69x10 ⁻³
	%	50%	10%	40%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for recycling	kg	0.00	0.00	4.19	4.19
	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
Clobal warming	kg CO2 eq	50.6	31.8	17.3	99.7
Global warming	%	51%	32%	17%	100%
Acidification	kg SO2 eq	0.204	0.133	5.59x10 ⁻²	0.393
ACIOINCALION	%	52%	34%	14%	100%
Eutrophication CMI	kg (PO)4 eq	8.91x10 ⁻²	5.56x10 ⁻²	8.46x10 ⁻²	0.229
	%	39%	24%	37%	100%
Photochomical avidation	kg C ₂ H ₄ eq	2.10x10 ⁻²	8.78x10 ⁻³	2.49x10 ⁻³	3.23x10 ⁻²
	%	65%	27%	7.7%	100%
Ozone layer depletion	kg CFC-11 eq	3.31x10 ⁻⁶	1.41x10 ⁻⁶	2.38x10 ⁻⁶	7.11x10 ⁻⁶
	%	47%	20%	34%	100%
Abiatic doplation (fascil fuels)	MJ	5.38x10 ⁻⁴	9.11x10 ⁻⁵	4.29x10 ⁻⁵	6.72x10 ⁻⁴
Abiotic depietion (rossii rueis)	%	80%	14%	6.4%	100%
Abiatic deplotion	kg Sb eq	626	425	203	1,250
Abiotic depietion	%	50%	34%	16%	100%
TRACI					
	kg CO2 eq	50.0	30.9	16.7	97.6
Global warming	%	51%	32%	17%	100%
	kg N eq	0.215	0.134	6.60x10 ⁻²	0.416
Acidification	%	52%	32%	16%	100%
Eutrophication	kg N eq	0.178	0.119	0.214	0.511
	%	35%	23%	42%	100%
	kg O₃ eq	3.25	1.72	1.63	6.60
Smog formation	%	49%	26%	25%	100%
	kg CFC-11 eq	4.10x10 ⁻⁶	1.88x10 ⁻⁶	3.18x10 ⁻⁶	9.15x10 ⁻⁶
Ozone depletion	%	45%	20%	35%	100%
	MJ surplus	58.8	51.1	29.1	139
Fossil fuel depletion	%	42%	37%	21%	100%
IPCC 2013					
	kg CO ₂ eq	49.9	28.3	14.7	93.0
Climate change - fossil	%	54%	30%	16%	100%
	kg CO2 eq	8.62	9.37	12.6	30.6
Climate change - biogenic	%	28%	31%	41%	100%
Climate change - land use and land	kg CO₂ eq	6.07x10 ⁻²	3.21x10 ⁻²	5.55x10 ⁻³	9.83x10 ⁻²
transformation	%	62%	33%	5.6%	100%
	kg CO2 eq	-11.0	-34.2	-5.75x10 ⁻²	-45.3
Climate change - CO2 uptake	%	24%	76%	0.13%	100%
Other Indicators					
	cases	2.71x10 ⁻⁵	2.13x10 ⁻⁶	9.98x10 ⁻⁷	3.02x10 ⁻⁵
Human toxicity, cancer	%	90%	7.1%	3.3%	100%
	cases	1.16x10 ⁻⁵	7.52x10 ⁻⁶	3.50x10 ⁻⁶	2.26x10 ⁻⁵
Human toxicity, non-cancer	%	51%	33%	15%	100%
	PAF.m ³ .day	723,000	871,000	386,000	1.98x10 ⁶
Freshwater ecotoxicity	%	37%	44%	20%	100%
Landurse	species.yr	6.40x10 ⁻⁸	2.13x10 ⁻⁷	4.30x10 ⁻⁹	2.81x10 ⁻⁷
Lanu use	%	23%	76%	1.5%	100%
	m ³	23.6	12.3	1.17	37.1
Water USE - AWARE	%	64%	33%	3.2%	100%

Table 10. Life Cycle Impact Assessment Results by life cycle phase for the KI *Pillar* Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Table 11. Resource use and waste flows by life cycle phase for the KI *Pillar* Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	150	384	2.21	536
renewable primary energy resources used as raw materials	%	28%	72%	0.41%	100%
Use of renewable primary energy resources	MJ	0.00	0.00	0.00	0.00
used as raw materials	%	0%	0%	0%	0%
Total use of renewable primary energy	MJ	158	412	2.25	572
resources	%	28%	72%	0.39%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy	MJ	663	436	205	1,300
resources	%	51%	33%	16%	100%
Use of secondary materials	kg	16.9	0.00	0.00	16.9
	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lise of pat frach water	m ³	2.43	1.57	0.140	4.14
Ose of het ites it water	%	59%	38%	3.4%	100%
Wastes					
Hazardous waste disposed	kg	1.97x10 ⁻³	3.31x10 ⁻⁴	5.36x10 ⁻⁴	2.84x10 ⁻³
	%	69%	12%	19%	100%
Non-hazardous waste disposed	kg	13.6	8.22	39.9	61.8
	%	22%	13%	65%	100%
High-level radioactive waste	kg	1.48x10 ⁻⁴	3.41x10 ⁻⁵	9.93x10⁻ ⁶	1.92x10 ⁻⁴
	%	77%	18%	5.2%	100%
Intermediate and low-level radioactive waste	kg	1.28x10 ⁻³	3.60x10 ⁻⁴	1.33x10 ⁻³	2.97x10 ⁻³
	%	43%	12%	45%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for recycling	kg	0.00	0.00	3.46	3.46
	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
	kg CO ₂ eq	132	53.5	29.1	214
Global warming	%	61%	25%	14%	100%
	kg SO2 eq	0.637	0.219	8.92x10 ⁻²	0.945
Acidification	%	67%	23%	9.4%	100%
Eutrophication CMI	kg (PO)4 eq	0.230	9.38x10 ⁻²	0.129	0.453
Eutrophication-CML	%	51%	21%	29%	100%
Photochomical ovidation	kg C ₂ H ₄ eq	5.70x10 ⁻²	1.31x10 ⁻²	4.28x10 ⁻³	7.44x10 ⁻²
Thotochemical oxidation	%	77%	18%	5.7%	100%
Ozone laver depletion	kg CFC-11 eq	1.12x10 ⁻⁵	2.19x10 ⁻⁶	3.80x10⁻ ⁶	1.71x10⁻⁵
	%	65%	13%	22%	100%
Abiotic depletion (fossil fuels)	MJ	1.45x10 ⁻³	1.20x10 ⁻⁴	6.84x10 ⁻⁵	1.64x10 ⁻³
	%	89%	7.3%	4.2%	100%
Abiotic depletion	kg Sb eq	1,760	664	323	2,750
	%	64%	24%	12%	100%
TRACI					
Global warming	kg CO2 eq	130	51.8	28.0	210
	%	62%	25%	13%	100%
Acidification	kg N eq	0.669	0.219	0.105	0.993
Actometer	%	67%	22%	11%	100%
Futrophication	kg N eq	0.433	0.205	0.325	0.963
Eutrophication	%	45%	21%	34%	100%
Smog formation	kg O₃ eq	10.8	2.61	2.60	16.0
Shieg formation	%	67%	16%	16%	100%
	kg CFC-11 eq	1.36x10 ⁻⁵	2.92x10 ⁻⁶	5.06x10 ⁻⁶	2.16x10 ⁻⁵
	%	63%	13%	23%	100%
Fossil fuel deplotion	MJ surplus	188	78.2	46.4	313
	%	60%	25%	15%	100%
IPCC 2013					
Climato chango fossil	kg CO2 eq	131	46.8	23.7	201
Climate change - 1055ii	%	65%	23%	12%	100%
Climate change - biogenic	kg CO ₂ eq	16.0	14.7	20.8	51.4
Climate change - biogenic	%	31%	29%	40%	100%
Climate change - land use and land	kg CO2 eq	0.129	3.38x10 ⁻²	8.89x10 ⁻³	0.171
transformation	%	75%	20%	5.2%	100%
Climate change CO2 uptake	kg CO2 eq	-19.4	-35.1	-9.22x10 ⁻²	-54.7
Climate change - CO2 uptake	%	36%	64%	0.17%	100%
Other Indicators					
Human tovicity, capcor	cases	5.57x10 ⁻⁵	3.00x10 ⁻⁶	1.80x10 ⁻⁶	6.05x10 ⁻⁵
Human toxicity, cancer	%	92%	5%	3%	100%
Human toxicity, non-cancer	cases	2.83x10 ⁻⁵	1.32x10 ⁻⁵	6.93x10 ⁻⁶	4.85x10 ⁻⁵
Human toxicity, non-cancel	%	58%	27%	14%	100%
Erochwator ocatovicity	PAF.m ³ .day	1.79x10 ⁶	1.62x10 ⁶	954,000	4.36x10 ⁶
FIESHWALEF ECOLOXICILY	%	41%	37%	22%	100%
Landurse	species.yr	1.16x10 ⁻⁷	2.16x10 ⁻⁷	6.85x10 ⁻⁹	3.39x10 ⁻⁷
Lanu use	%	34%	64%	2%	100%
	m ³	64.8	18.1	1.91	84.8

%

76%

21%

Table 12. Life Cycle Impact Assessment Results by life cycle phase for the KI Pirouette Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

100%

2.2%

Water use - AWARE

for a roycar period, based on the river Brith (XS.S	test. Results are equivalent for a 15 year reference service Life.						
Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total		
Resources							
Use of renewable primary energy excluding the	MJ	289	400	3.55	693		
renewable primary energy resources used as raw materials	%	42%	58%	0.51%	100%		
Use of renewable primary energy resources	MJ	0.00	0.00	0.00	0.00		
used as raw materials	%	0%	0%	0%	0%		
Total use of renewable primary energy	MJ	305	429	3.62	737		
resources	%	41%	58%	0.49%	100%		
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA		
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA		
Total use of non-renewable primary energy	MJ	1,880	676	327	2,880		
resources	%	65%	23%	11%	100%		
	kg	29.4	0.00	0.00	29.4		
Use of secondary materials	%	100%	0%	0%	100%		
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.		
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.		
Lice of pat frach water	m ³	6.36	2.55	0.226	9.13		
Ose of het fresh water	%	70%	28%	2.5%	100%		
Wastes							
Hazardous wasto disposed	kg	4.52x10 ⁻³	4.93x10 ⁻⁴	8.57x10 ⁻⁴	5.87x10 ⁻³		
nazai dous waste disposed	%	77%	8.4%	15%	100%		
Non bazardour, waste disposed	kg	35.1	14.4	63.6	113		
Non-hazardous waste disposed	%	31%	13%	56%	100%		
Llich lovel radioactive wasta	kg	3.56x10 ⁻⁴	3.83x10 ⁻⁵	1.60x10 ⁻⁵	4.10x10 ⁻⁴		
High-level radioactive waste	%	87%	9.3%	3.9%	100%		
	kg	4.14x10 ⁻³	4.24x10-4	2.13x10 ⁻³	6.69x10 ⁻³		
Intermediate and low-level radioactive waste	%	62%	6.3%	32%	100%		
Components for re-use	kg	0.00	0.00	0.00	0.00		
Materials for recycling	kg	0.00	0.00	5.59	5.59		
Materials for recycling	%	0%	0%	100%	100%		
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.		

MJ

Neg.

Neg.

Neg.

Table 13. Resource use and waste flows by life cycle phase for the KI **Pirouette** Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Exported energy

Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
Clobal warming	kg CO2 eq	48.0	32.0	17.6	97.6
Global warming	%	49%	33%	18%	100%
Acidification	kg SO2 eq	0.191	0.133	5.62x10 ⁻²	0.381
Acidification	%	50%	35%	15%	100%
Eutrophication-CMI	kg (PO)4 eq	8.35x10 ⁻²	5.59x10 ⁻²	8.59x10 ⁻²	0.225
	%	37%	25%	38%	100%
Photochemical oxidation	kg C ₂ H ₄ eq	1.87x10 ⁻²	8.82x10 ⁻³	2.51x10 ⁻³	3.00x10 ⁻²
	%	62%	29%	8.4%	100%
Ozone laver depletion	kg CFC-11 eq	2.89x10 ⁻⁶	1.42x10 ⁻⁶	2.40x10 ⁻⁶	6.71x10 ⁻⁶
	%	43%	21%	36%	100%
Abiatic depletion (fossil fuels)	MJ	4.77×10 ⁻⁴	9.14x10 ⁻⁵	4.31x10 ⁻⁵	6.12x10 ⁻⁴
	%	78%	15%	7.1%	100%
Abiotic depletion	kg Sb eq	594	428	204	1,230
	%	48%	35%	17%	100%
TRACI					
Global warming	kg CO2 eq	47.5	31.1	17.0	95.6
Global Warming	%	50%	33%	18%	100%
Acidification	kg N eq	0.202	0.135	6.64x10 ⁻²	0.404
Acidineation	%	50%	33%	16%	100%
Eutrophication	kg N eq	0.166	0.120	0.218	0.504
Eutrophication	%	33%	24%	43%	100%
Smog formation	kg O₃ eq	3.05	1.73	1.64	6.42
	%	47%	27%	26%	100%
	kg CFC-11 eq	3.65x10 ⁻⁶	1.89x10 ⁻⁶	3.20x10 ⁻⁶	8.73x10 ⁻⁶
	%	42%	22%	37%	100%
Fossil fuel depletion	MJ surplus	55.0	51.4	29.3	136
	%	41%	38%	22%	100%
IPCC 2013					
Climate change - fossil	kg CO ₂ eq	47.4	28.5	15.0	90.9
	%	52%	31%	17%	100%
Climate change - biogenic	kg CO2 eq	8.53	9.42	12.7	30.6
	%	28%	31%	41%	100%
Climate change - land use and land	kg CO ₂ eq	5.48x10 ⁻²	3.21x10 ⁻²	5.58x10 ⁻³	9.25x10 ⁻²
transformation	%	59%	35%	6%	100%
Climate change - CO2 untake	kg CO2 eq	-11.0	-34.2	-5.79x10 ⁻²	-45.3
	%	24%	76%	0.13%	100%
Other Indicators					
Human toxicity, cancer	cases	2.65x10⁻⁵	2.14x10 ⁻⁶	1.00x10 ⁻⁶	2.96x10 ⁻⁵
	%	89%	7.2%	3.4%	100%
Human toxicity, non-cancer	cases	1.08x10 ⁻⁵	7.58x10 ⁻⁶	3.63x10 ⁻⁶	2.20x10 ⁻⁵
	%	49%	34%	16%	100%
Freshwater ecotoxicity	PAF.m ³ .day	674,000	878,000	384,000	1.94x10 ⁶
	%	35%	45%	20%	100%
Land use	species.yr	6.39x10 ⁻⁸	2.13x10 ⁻⁷	4.33x10 ⁻⁹	2.81x10 ⁻⁷
	%	23%	76%	1.5%	100%
Water use - AWARF	m ³	21.0	12.4	1.18	34.6
Water USE - AWARE	%	61%	36%	3.4%	100%

Table 14. Life Cycle Impact Assessment Results by life cycle phase for the KI Portico Office Table. Results are shown for one table

 maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test.

 Results are equivalent for a 15-year Reference Service Life.

Table 15. Resource use and waste flows by life cycle phase for the KI **Portico** Office Table. Results are shown for one table maintained for

 a 10-year period, based on the ANSI/BIFMA x5.5 test.
 Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	147	384	2.22	533
renewable primary energy resources used as raw materials	%	28%	72%	0.42%	100%
Use of renewable primary energy resources used	MJ	0.00	0.00	0.00	0.00
as raw materials	%	0%	0%	0%	0%
Total use of renowable primany operatives of	MJ	155	412	2.27	569
Total use of renewable primary energy resources	%	27%	72%	0.4%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy	MJ	626	438	206	1,270
resources	%	49%	34%	16%	100%
	kg	17.0	0.00	0.00	17.0
Ose of secondary materials	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lise of pot fresh water	m ³	2.22	1.58	0.141	3.94
Ose of het ites it water	%	56%	40%	3.6%	100%
Wastes					
Hazardous wasto disposod	kg	1.92x10 ⁻³	3.33x10 ⁻⁴	5.40x10 ⁻⁴	2.79x10 ⁻³
liazai dous waste disposed	%	69%	12%	19%	100%
Non-hazardous waste disposed	kg	13.2	8.28	40.2	61.7
Non-nazardous waste disposed	%	21%	13%	65%	100%
High loval radioactivo wasto	kg	1.39x10 ⁻⁴	3.42x10 ⁻⁵	9.99x10⁻ ⁶	1.83x10 ⁻⁴
Tigr-level radioactive waste	%	76%	19%	5.5%	100%
Intermediate and low level radioactive waste	kg	1.21x10 ⁻³	3.61x10 ⁻⁴	1.34x10 ⁻³	2.91x10 ⁻³
Intermediate and low-level radioactive waste	%	42%	12%	46%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for requiring	kg	0.00	0.00	3.45	3.45
Materials IOF recycling	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
Clabal warming	kg CO2 eq	66.0	36.4	22.2	125
Giobai warming	%	53%	29%	18%	100%
Acidification	kg SO2 eq	0.304	0.151	6.34x10 ⁻²	0.518
Acidification	%	59%	29%	12%	100%
Eutrophication-CML	kg (PO)4 eq	0.110	6.37x10 ⁻²	0.106	0.279
	%	39%	23%	38%	100%
Photochemical oxidation	kg C ₂ H ₄ eq	3.05x10 ⁻²	9.69x10⁻³	3.19x10 ⁻³	4.34x10 ⁻²
	%	70%	22%	7.4%	100%
Ozone laver depletion	kg CFC-11 eq	5.76x10 ⁻⁶	1.58x10 ⁻⁶	2.69x10 ⁻⁶	1.00x10 ⁻⁵
	%	57%	16%	27%	100%
Abiatic depletion (fossil fuels)	MJ	7.75x10 ⁻⁴	9.72x10 ⁻⁵	4.85x10⁻⁵	9.21x10 ⁻⁴
	%	84%	11%	5.3%	100%
Abiotic depletion	kg Sb eq	1,020	476	229	1,720
Abiotic depiction	%	59%	28%	13%	100%
TRACI					
Global warming	kg CO2 eq	65.4	35.3	21.2	122
Global warning	%	54%	29%	17%	100%
Acidification	kg N eq	0.316	0.152	7.50x10 ⁻²	0.544
Acidineation	%	58%	28%	14%	100%
Futrophication	kg N eq	0.210	0.137	0.269	0.616
Eutrophication	%	34%	22%	44%	100%
Smog formation	kg O₃ eq	4.92	1.91	1.85	8.68
Shing formation	%	57%	22%	21%	100%
Ozopa deplation	kg CFC-11 eq	6.89x10⁻ ⁶	2.10x10 ⁻⁶	3.58x10 ⁻⁶	1.26x10⁻⁵
	%	55%	17%	29%	100%
Fossil fuel depletion	MJ surplus	118	56.9	32.8	208
	%	57%	27%	16%	100%
IPCC 2013					
Climate change - fossil	kg CO ₂ eq	65.8	32.2	17.8	116
	%	57%	28%	15%	100%
Climate change - biogenic	kg CO2 eq	9.66	10.5	16.7	36.8
	%	26%	28%	45%	100%
Climate change - land use and land	kg CO ₂ eq	7.72x10 ⁻²	3.24x10 ⁻²	6.31x10 ⁻³	0.116
transformation	%	67%	28%	5.4%	100%
Climate change - CO2 untake	kg CO2 eq	-13.2	-34.4	-6.56x10 ⁻²	-47.7
	%	28%	72%	0.14%	100%
Other Indicators					
Human toxicity cancer	cases	1.89x10 ⁻⁵	2.32x10 ⁻⁶	1.13x10 ⁻⁶	2.24x10 ⁻⁵
Human toxicity, cancer	%	85%	10%	5%	100%
Human toxicity non-cancer	cases	1.38x10⁻⁵	8.73x10 ⁻⁶	5.68x10 ⁻⁶	2.82x10 ⁻⁵
Human toxicity, non cancer	%	49%	31%	20%	100%
Freshwater ecotoxicity	PAF.m ³ .day	923,000	1.03x10 ⁶	510,000	2.46x10 ⁶
The structure contents	%	37%	42%	21%	100%
Landuse	species.yr	7.69x10 ⁻⁸	2.13x10 ⁻⁷	4.86x10 ⁻⁹	2.95x10 ⁻⁷
	%	26%	72%	1.6%	100%
Water use - AWARE	m ³	40.7	13.6	1.39	55.6
Hater abe / W/ INE	%	73%	24%	2.5%	100%

 Table 16. Life Cycle Impact Assessment Results by life cycle phase for the KI Toggle Office Table. Results are shown for one table

 maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test.

 Results are equivalent for a 15-year Reference Service Life.

Table 17. Resource use and waste flows by life cycle phase for the KI Toggle Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	180	387	2.53	570
renewable primary energy resources used as raw materials	%	32%	68%	0.44%	100%
Use of renewable primary energy resources	MJ	0.00	0.00	0.00	0.00
used as raw materials	%	0%	0%	0%	0%
	MJ	191	415	2.58	609
Total use of renewable primary energy resources	%	31%	68%	0.42%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy	MJ	1,080	486	232	1,800
resources	%	60%	27%	13%	100%
Use of secondary materials	kg	19.1	0.00	0.00	19.1
	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lice of pat frach water	m ³	3.76	1.78	0.162	5.70
Use of het fresh water	%	66%	31%	2.8%	100%
Wastes					
Hazardous wasto disposod	kg	1.77x10 ⁻³	3.66x10 ⁻⁴	6.08×10 ⁻⁴	2.74x10 ⁻³
liazai uous waste uisposeu	%	65%	13%	22%	100%
Non-hazardous waste disposed	kg	14.0	9.53	46.0	69.5
Non-nazardous waste disposed	%	20%	14%	66%	100%
High loval radioactivo wasto	kg	1.86x10 ⁻⁴	3.50x10 ⁻⁵	1.14x10 ⁻⁵	2.32x10 ⁻⁴
Tightevel radioactive waste	%	80%	15%	4.9%	100%
Intermediate and low level radioactive waste	kg	1.84x10 ⁻³	3.74x10 ⁻⁴	1.50×10 ⁻³	3.72x10 ⁻³
	%	50%	10%	40%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for require	kg	0.00	0.00	2.68	2.68
	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
	kg CO2 eq	46.5	31.1	17.4	95.0
Giobai warming	%	49%	33%	18%	100%
	kg SO2 eq	0.202	0.130	5.49x10 ⁻²	0.386
Acidification	%	52%	34%	14%	100%
	kg (PO)4 eq	7.92x10 ⁻²	5.43x10 ⁻²	8.61x10 ⁻²	0.220
Eutrophication-CME	%	36%	25%	39%	100%
	kg C ₂ H ₄ eq	1.86x10 ⁻²	8.64x10 ⁻³	2.48x10 ⁻³	2.97x10 ⁻²
Photochemical oxidation	%	63%	29%	8.3%	100%
Ozona lavor deplotion	kg CFC-11 eq	3.05x10 ⁻⁶	1.39x10 ⁻⁶	2.34x10 ⁻⁶	6.78x10 ⁻⁶
Ozone layer depietion	%	45%	20%	35%	100%
	MJ	4.40×10-4	9.02x10 ⁻⁵	4.21x10 ⁻⁵	5.72x10 ⁻⁴
Abiotic depietion (rossii tueis)	%	77%	16%	7.4%	100%
	kg Sb eq	591	417	199	1,210
Abiotic depietion	%	49%	35%	16%	100%
TRACI					
	kg CO2 eq	46.0	30.2	16.8	93.0
Giobai warming	%	49%	33%	18%	100%
	kg N eq	0.213	0.132	6.49x10 ⁻²	0.410
Acidification	%	52%	32%	16%	100%
	kg N eq	0.153	0.116	0.219	0.488
Eutrophication	%	31%	24%	45%	100%
	kg O₃ eq	3.32	1.69	1.60	6.62
Smog formation	%	50%	26%	24%	100%
	kg CFC-11 eq	3.87x10⁻ ⁶	1.84x10 ⁻⁶	3.12x10 ⁻⁶	8.83x10 ⁻⁶
Ozone depletion	%	44%	21%	35%	100%
	MJ surplus	58.0	50.3	28.6	137
Fossil fuel depletion	%	42%	37%	21%	100%
IPCC 2013					
	kg CO₂ eq	46.0	27.8	14.7	88.5
Climate change - fossil	%	52%	31%	17%	100%
	kg CO2 eq	8.28	9.20	12.8	30.2
Climate change - biogenic	%	27%	30%	42%	100%
Climate change - land use and land	kg CO₂ eq	6.69x10 ⁻²	3.20x10 ⁻²	5.45x10 ⁻³	0.104
transformation	%	64%	31%	5.2%	100%
	kg CO2 eq	-10.9	-34.2	-5.66x10 ⁻²	-45.2
Climate change - CO2 uptake	%	24%	76%	0.13%	100%
Other Indicators					
	cases	2.26x10 ⁻⁵	2.11x10 ⁻⁶	9.53x10 ⁻⁷	2.56x10 ⁻⁵
Human toxicity, cancer	%	88%	8.2%	3.7%	100%
	cases	9.99x10 ⁻⁶	7.34x10 ⁻⁶	3.66x10 ⁻⁶	2.10x10 ⁻⁵
Human toxicity, non-cancer	%	48%	35%	17%	100%
	PAF.m ³ .day	619,000	847,000	350,000	1.82x10 ⁶
Freshwater ecotoxicity	%	34%	47%	19%	100%
	species.yr	6.40×10 ⁻⁸	2.12x10 ⁻⁷	4.23×10 ⁻⁹	2.81×10 ⁻⁷
Land use	%	23%	76%	1.5%	100%
	m ³	21.2	12.2	1.16	34.6
Water use - AWARE	%	61%	35%	3.4%	100%

Table 18. Life Cycle Impact Assessment Results by life cycle phase for the KI
 Trek Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Table 19. Resource use and waste flows by life cycle phase for the KI
 Trek Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	143	383	2.17	529
renewable primary energy resources used as raw materials	%	27%	72%	0.41%	100%
Use of renewable primary energy resources	MJ	0.00	0.00	0.00	0.00
used as raw materials	%	0%	0%	0%	0%
Total use of renewable primary energy	MJ	152	411	2.22	565
resources	%	27%	73%	0.39%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy	MJ	623	428	201	1,250
resources	%	50%	34%	16%	100%
Lice of cocondany materials	kg	16.7	0.00	0.00	16.7
Ose of secondary materials	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lice of pet fresh water	m ³	2.16	1.54	0.138	3.83
OSE OF HELITESH WALEF	%	56%	40%	3.6%	100%
Wastes					
Hazardous waste disposed	kg	1.73x10 ⁻³	3.26x10 ⁻⁴	5.27x10 ⁻⁴	2.59x10 ⁻³
	%	67%	13%	20%	100%
Non-hazardous waste disposed	kg	12.9	8.02	39.4	60.4
	%	21%	13%	65%	100%
High-level radioactive waste	kg	1.29x10 ⁻⁴	3.40x10 ⁻⁵	9.77x10 ⁻⁶	1.73x10 ⁻⁴
	%	75%	20%	5.7%	100%
Intermediate and low-level radioactive waste	kg	1.31x10 ⁻³	3.58x10 ⁻⁴	1.31x10 ⁻³	2.98x10 ⁻³
	%	44%	12%	44%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for recycling	kg	0.00	0.00	3.11	3.11
	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
Clobal warming	kg CO2 eq	31.6	27.9	18.3	77.9
Global warming	%	41%	36%	23%	100%
Asidification	kg SO2 eq	0.151	0.117	5.06x10 ⁻²	0.318
Acidification	%	47%	37%	16%	100%
	kg (PO)4 eq	5.15x10 ⁻²	4.87x10 ⁻²	8.99x10 ⁻²	0.190
Eutrophication-CML	%	27%	26%	47%	100%
	kg C ₂ H ₄ eq	1.60x10 ⁻²	8.00x10 ⁻³	2.71x10 ⁻³	2.67x10 ⁻²
Photochemical oxidation	%	60%	30%	10%	100%
One of the state o	kg CFC-11 eq	3.26x10 ⁻⁶	1.27x10 ⁻⁶	2.14x10 ⁻⁶	6.68x10 ⁻⁶
Ozone layer depiction	%	49%	19%	32%	100%
	MJ	4.23x10 ⁻⁴	8.59x10 ⁻⁵	3.86x10 ⁻⁵	5.48x10 ⁻⁴
Abiotic depletion (fossil fuels)	%	77%	16%	7.1%	100%
	kg Sb eq	532	382	182	1,100
Abiotic depletion	%	49%	35%	17%	100%
TRACI					
	kg CO ₂ eq	31.4	27.2	17.4	75.9
Global warming	%	41%	36%	23%	100%
	kg N ea	0.156	0.119	5.98x10 ⁻²	0.335
Acidification	%	47%	36%	18%	100%
	kg N ea	9 56x10 ⁻²	0.103	0.230	0.429
Eutrophication	%	22%	24%	54%	100%
	kg Op en	2.45	1 56	1 47	5.49
Smog formation	%	45%	28%	27%	100%
	kg CFC-11 eq	3.83x10 ⁻⁶	1 69x10 ⁻⁶	2.85x10 ⁻⁶	8 37×10 ⁻⁶
Ozone depletion	%	46%	20%	34%	100%
	MIsurplus	66.3	46.3	26.1	139
Fossil fuel depletion	1vij surpius %	48%	33%	19%	100%
IPCC 2013	70	4070	5570	1570	10070
		31 7	25.0	1/ 0	70.8
Climate change - fossil	Ng CO2 CQ	45%	25.0	20%	10.0%
	λα (Ο ₂ οα	45%	8 /1	15.2	30.3
Climate change - biogenic	kg CO2 Eq	0.04	2206	5.0%	100%
Climate change, land use and land	70 kg (Q- og	2270	2070	5 02v10-3	6 65v10-2
climate change - land use and land	kg CO2 Eq	2.97210-	3.10×10-	7.6%	100%
	70 kg (Q- og	4,5%	24.1	F 24x10-2	100%
Climate change - CO2 uptake	kg CO2 eq	-9.09	-54.1	-5.24X10-	-44.0
Other Indicators	90	2290	/ / %0	0.12%	100%
	62505	2 24, 10-6	1 09v10-6	9 26v10-7	6 16v10-6
Human toxicity, cancer	Cases	5.54810 °	1.96810 °	0.50X107	0.10X10°
	%	54% C COv10-6	32% C FOv10-6	14%	1.00%
Human toxicity, non-cancer	Cases	0.09X10°	0.50X10°	4.82X10°	1.80X10-
	70 DAE m ³ day	37%	726,000	27%	1.57×1.06
Freshwater ecotoxicity	PAF.III ⁹ .uay	470,000	/ 50,000	204,000	1.57X10
	%	50%	4/%	2.3%	100%
Land use	species.yr	5./ IXIU**	Z.12X10-'	3.8/XIU-9	2.73X10-
	%	21%	/8%	1.4%	100%
Water use - AWARE	111-2	20.2	11.3	1.14	38.0
	%	68%	19%	19%	100%

Table 20. Life Cycle Impact Assessment Results by life cycle phase for the KI Workup Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Table 21. Resource use and waste flows by life cycle phase for the KI Workup Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the	MJ	122	381	2.03	505
renewable primary energy resources used as raw materials	%	24%	75%	0.4%	100%
Use of renewable primary energy resources	MJ	0.00	0.00	0.00	0.00
used as raw materials	%	0%	0%	0%	0%
Total use of renewable primary energy	MJ	130	408	2.07	540
resources	%	24%	76%	0.38%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy	MJ	570	392	184	1,150
resources	%	50%	34%	16%	100%
	kg	14.4	0.00	0.00	14.4
Use of secondary materials	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Lice of pat frach water	m ³	2.19	1.39	0.130	3.72
Use of het fresh water	%	59%	38%	3.5%	100%
Wastes					
Hazardous wasta disposed	kg	5.60x10 ⁻⁴	3.02x10 ⁻⁴	4.83x10 ⁻⁴	1.34x10 ⁻³
liazai uous waste uisposeu	%	42%	22%	36%	100%
Non bazardous wasto disposod	kg	5.27	7.11	37.1	49.5
Non-nazardous waste disposed	%	11%	14%	75%	100%
High lovel radioactive waste	kg	8.71x10 ⁻⁵	3.34x10 ⁻⁵	9.18x10 ⁻⁶	1.30x10 ⁻⁴
	%	67%	26%	7.1%	100%
Intermediate and low lovel radioactive waste	kg	8.87x10 ⁻⁴	3.49x10 ⁻⁴	1.20x10 ⁻³	2.43x10 ⁻³
	%	36%	14%	49%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for requiring	kg	0.00	0.00	1.38	1.38
Materials for recycling	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

Impact Category	Unit	Upstream Module	Core Module	Downstream Module	Total
CML					
Clobal warming	kg CO2 eq	19.7	33.4	18.3	71.4
Giobai warming	%	28%	47%	26%	100%
Acidification	kg SO ₂ eq	9.77x10 ⁻²	0.139	5.87x10 ⁻²	0.295
Acidification	%	33%	47%	20%	100%
Futraphication CM	kg (PO)4 eq	3.03x10 ⁻²	5.84x10 ⁻²	0.106	0.194
	%	16%	30%	54%	100%
Photochemical oxidation	kg C ₂ H ₄ eq	8.65x10 ⁻³	9.10x10 ⁻³	2.63x10 ⁻³	2.04x10 ⁻²
	%	42%	45%	13%	100%
Ozona lavar daplatian	kg CFC-11 eq	1.57x10 ⁻⁶	1.47x10 ⁻⁶	2.50x10 ⁻⁶	5.54x10 ⁻⁶
Ozone layer depletion	%	28%	27%	45%	100%
Abiatic deplotion (faceil fuels)	MJ	1.78x10 ⁻⁴	9.32x10 ⁻⁵	4.49x10 ⁻⁵	3.16x10 ⁻⁴
Abiotic depietion (tossil tuels)	%	56%	29%	14%	100%
	kg Sb eq	320	443	212	975
Abiotic depletion	%	33%	45%	22%	100%
TRACI					
	kg CO2 eq	19.5	32.5	17.6	69.6
Global warming	%	28%	47%	25%	100%
	kg N eq	0.106	0.141	6.93x10 ⁻²	0.316
Acidification	%	33%	45%	22%	100%
Eutrophication	kg N eq	5.08x10 ⁻²	0.125	0.272	0.448
	%	11%	28%	61%	100%
	kg O₃ eq	1.82	1.78	1.72	5.32
Smog formation	%	34%	34%	32%	100%
	kg CFC-11 eq	2.01x10 ⁻⁶	1.95x10 ⁻⁶	3.33x10 ⁻⁶	7.29x10 ⁻⁶
Ozone depletion	%	28%	27%	46%	100%
	MI surplus	37.7	53.1	30.5	121
Fossil fuel depletion	%	31%	44%	25%	100%
IPCC 2013					
	kg CO2 eq	19.8	29.7	15.5	65.0
Climate change - fossil	%	30%	46%	24%	100%
	kg CO ₂ eq	10.3	9.76	15.7	35.8
Climate change - biogenic	%	29%	27%	44%	100%
Climate change - land use and land	kg CO2 eq	2.47×10 ⁻²	3.22x10 ⁻²	5.80x10 ⁻³	6.27x10 ⁻²
transformation	%	39%	51%	9.3%	100%
	kg CO ₂ ea	-16.3	-34.3	-6.04x10 ⁻²	-50.6
Climate change - CO2 uptake	%	32%	68%	0.12%	100%
Other Indicators					
	cases	2.04x10 ⁻⁶	2.20x10 ⁻⁶	7.94x10 ⁻⁷	5.03x10 ⁻⁶
Human toxicity, cancer	%	41%	44%	16%	100%
	cases	4.10x10-6	7.94x10 ⁻⁶	3.53x10 ⁻⁶	1.56x10 ⁻⁵
Human toxicity, non-cancer	%	26%	51%	23%	100%
	PAF m ³ day	258.000	926.000	95.600	1 28×10 ⁶
Freshwater ecotoxicity	%	20%	72%	7.5%	100%
	species vr	9.35x10 ⁻⁸	2.13x10 ⁻⁷	4.52×10 ⁻⁹	3.11x10 ⁻⁷
Land use	%	30%	68%	1.5%	100%
	m ³	16.0	12.8	1.25	30.0
Water use - AWARE	%	53%	43%	4.2%	100%

Table 22. *Life Cycle Impact Assessment Results by life cycle phase for the KI Worksurface only Office Table. Results are shown for one table maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test. Results are equivalent for a 15-year Reference Service Life.*

Table 23. Resource use and waste flows by life cycle phase for the KI
 Worksurface only Office Table. Results are shown for one table

 maintained for a 10-year period, based on the ANSI/BIFMA x5.5 test.
 Results are equivalent for a 15-year Reference Service Life.

Parameter	Unit	Upstream Module	Core Module	Downstream Module	Total
Resources					
Use of renewable primary energy excluding the renewable primary energy resources used as raw materials	MJ	178	385	2.32	565
	%	31%	68%	0.41%	100%
Use of renewable primary energy resources used as raw materials	MJ	0.00	0.00	0.00	0.00
	%	0%	0%	0%	0%
Total use of renewable primary energy	MJ	191	413	2.37	606
resources	%	31%	68%	0.39%	100%
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Use of non-renewable primary energy excluding non-renewable primary energy resources used as raw materials	MJ	INA	INA	INA	INA
Total use of non-renewable primary energy	MJ	334	453	215	1,000
resources	%	33%	45%	21%	100%
Liss of cocordon, materials	kg	23.9	0.00	0.00	23.9
Ose of secondally materials	%	100%	0%	0%	100%
Use of renewable/non-renewable secondary fuels		Neg.	Neg.	Neg.	Neg.
Recovered energy	MJ	Neg.	Neg.	Neg.	Neg.
Use of net fresh water	m ³	1.33	1.64	0.148	3.12
	%	43%	53%	4.7%	100%
Wastes					
Hazardous wasta disposad	kg	3.83x10 ⁻⁴	3.43x10 ⁻⁴	5.61x10 ⁻⁴	1.29x10 ⁻³
ו ומבמו טטטג אימגוע טוגאטאפט	%	30%	27%	44%	100%
Non-hazardous waste disposed	kg	4.11	8.68	43.5	56.3
	%	7.3%	15%	77%	100%
High-level radioactive waste	kg	5.29x10 ⁻⁵	3.45x10⁻⁵	1.05x10 ⁻⁵	9.78x10 ⁻⁵
	%	54%	35%	11%	100%
Intermediate and low-level radioactive waste	kg	6.03x10 ⁻⁴	3.65x10 ⁻⁴	1.40x10 ⁻³	2.36x10 ⁻³
Intermediate and low-lever radioactive Waste	%	26%	15%	59%	100%
Components for re-use	kg	0.00	0.00	0.00	0.00
Materials for recycling	kg	0.00	0.00	1.34	1.34
Materials for recycling	%	0%	0%	100%	100%
Materials for energy recovery	kg	Neg.	Neg.	Neg.	Neg.
Exported energy	MJ	Neg.	Neg.	Neg.	Neg.

ADDITIONAL ENVIRONMENTAL INFORMATION

The following KI Office Table products included in this EPD are 3rd party certified level® 2: Athens, Connection Zone, InTandem, Pirouette, Toggle, Trek, and Workup.

The mark of responsible forestry KI Office Tables support a healthy indoor environment through emissions testing. The following KI Office Tables are certified Indoor Advantage[™] Gold, qualify for LEED low-emitting materials credits, comply with ANSI/BIFMA X7.1/M7.1, and meet CA 01350 air emissions requirements: Athens, Connection Zone, InTandem, Pirouette,

FSC® certified wood can be ordered upon request.

Portico, Toggle, Trek, and Workup.

SUPPORTING TECHNICAL INFORMATION

Unit processes were developed with OpenLCA v1.10 software, drawing upon data from multiple sources. Primary data were provided by KI and some of its suppliers for their manufacturing processes. The primary sources of secondary LCI data are from Ecoinvent Database.

Table 24. Data sources used for the LCA study.

Component	Dataset	Data Source	Publication Date
PRODUCT			
Particleboard			
Particleboard	particleboard production, uncoated, average glue mix particleboard, uncoated Cutoff, S/RoW	EI v3.8	2021
Steel			
Steel - BOF	steel production, converter, low-alloyed steel, low-alloyed Cutoff, S/RoW	EI v3.8	2021
Plastics			
PVC, Polypropylene, Nylon	polypropylene production, granulate polypropylene, granulate Cutoff, S/RoW	EI v3.8	2021
	polyvinylchloride production, bulk polymerisation polyvinylchloride, bulk polymerised Cutoff, S/RoW	EI v3.8	2021
	nylon 6-6 production nylon 6-6 Cutoff, S/RoW	EI v3.8	2021
Laminate		51.00	2024
	cellulose fibre production cellulose fibre Cutoff, S/RoW;	EI V3.8	2021
High Pressure Decorative Laminate	S/RoW;	EI v3.8	2021
	polyester resin production, unsaturated polyester resin, unsaturated Cutoff, S/RoW;	EI v3.8	2021
	acrylic binder production, product in 34% solution state acrylic binder, without water, in 34% solution state Cutoff, S/RoW	EI v3.8	2021
Other			
Paper Coating powder	kraft paper production kraft paper Cutoff, S/RoW	EI v3.8	2021
Adhesives	coating powder production coating powder Cutoff, S/RoW	EI v3.8	2021
DACKACINIC	polyurethane adhesive production polyurethane adhesive Cutoff, S/GLO	EI v3.8	2021
PACKAGING	containerheard production linerheard kraftliner L containerheard		
Corrugate	linerboard Cutoff, S/RoW	EI v3.8	2021
Plastics	packaging film production, low density polyethylene packaging film, low density polyethylene Cutoff, S/RoW	El v3.8	2021
	polypropylene production, granulate polypropylene, granulate Cutoff, S/RoW	EI v3.8	2021
Wood	market for EUR-flat pallet EUR-flat pallet Cutoff, S/GLO	EI v3.8	2021
TRANSPORT			
Road transport	market for transport, freight, lorry 16-32 metric ton, EURO4 transport, freight, lorry 16-32 metric ton, EURO4 Cutoff, S/RoW	EI v3.8	2021
Ship transport	transport, freight, sea, container ship transport, freight, sea, container ship Cutoff, S/GLO	EI v3.8	2021
RESOURCES			
Grid electricity	Electricity, medium voltage, per kWh - RFCW/RFCW	El v3.8; eGRID 2018	2021; 2021
Heat – natural gas	heat production, natural gas, at industrial furnace >100kW heat, district or industrial, natural gas Cutoff, S/RoW	EI v3.8	2021
Heat – fuel oil	heat production, heavy fuel oil, at industrial furnace 1MW heat, district or		
	industrial, other than natural gas Cutoff, S/RoW; heat production, light fuel oil, at industrial furnace 1MW heat, district or industrial, other than natural gas Cutoff_S/RoW	EI v3.8	2021
Heat – propane	propane, burned in building machine propane, burned in building machine Cutoff, S/GLO	El v3.8	2021

Data Quality

Data Quality Parameter	Data Quality Discussion
Time-Related Coverage: Age of data and the minimum length of time over which data is collected	The most recent available data are used, based on other considerations such as data quality and similarity to the actual operations. Typically, these data are less than 5 years old (typically 2016). All of the data used represented an average of at least one year's worth of data collection, and up to three years in some cases. Manufacturer-supplied data (primary data) are based on annual production for 2021.
Geographical Coverage: Geographical area from which data for unit processes is collected to satisfy the goal of the study	The data used in the analysis provide the best possible representation available with current data. Electricity use for product manufacture is modeled using representative data for regional power mixes from the Ecoinvent LCI database. Surrogate data used in the assessment are representative of global or North American operations. Data representative of global operations are considered sufficiently similar to actual processes. Data representing product disposal are based on US statistics.
Technology Coverage: Specific technology or technology mix	For the most part, data are representative of the actual technologies used for processing, transportation, and manufacturing operations. Representative datasets, specific to the type of material, are used to represent the actual processes, as appropriate.
Precision: Measure of the variability of the data values for each data expressed	Precision of results are not quantified due to a lack of data. Data collected for operations were typically averaged for one or more years and over multiple operations, which is expected to reduce the variability of results.
Completeness: Percentage of flow that is measured or estimated	The LCA model included all known mass and energy flows for production of the products. In some instances, surrogate data used to represent upstream and downstream operations may be missing some data which is propagated in the model. No known processes or activities contributing to more than 1% of the total environmental impact for each indicator are excluded.
Representativeness: Qualitative assessment of the degree to which the data set reflects the true population of interest	Data used in the assessment represent typical or average processes as currently reported from multiple data sources and are therefore generally representative of the range of actual processes and technologies for production of these materials. Considerable deviation may exist among actual processes on a site-specific basis; however, such a determination would require detailed data collection throughout the supply chain back to resource extraction.
Consistency: Qualitative assessment of whether the study methodology is applied uniformly to the various components of the analysis	The consistency of the assessment is considered to be high. Data sources of similar quality and age are used; with a bias towards Ecoinvent v3.8 data where available. Different portions of the product life cycle are equally considered.
Reproducibility: Qualitative assessment of the extent to which information about the methodology and data values would allow an independent practitioner to reproduce the results reported in the study	Based on the description of data and assumptions used, this assessment would be reproducible by other practitioners. All assumptions, models, and data sources are documented.
Sources of the Data: Description of all primary and secondary data sources	Data representing energy use at manufacturing facility represent an annual average and are considered of high quality due to the length of time over which these data are collected, as compared to a snapshot that may not accurately reflect fluctuations in production. For secondary LCI data, Ecoinvent v3.8 LCI data are used.
Uncertainty of the Information: Uncertainty related to data, models, and assumptions	Uncertainty related to materials in the products and packaging is low. Actual supplier data for all upstream operations were not available and the study relied upon the use of existing representative datasets. These datasets contained relatively recent data (<10 years) but lacked geographical representativeness. Uncertainty related to the impact assessment methods used in the study are high. The impact assessment method required by the PCR includes impact potentials, which lack characterization of providing and receiving environments or tipping points.

Allocation

Resource use at the Bonduel, Wisconsin facility (e.g., water and energy) was allocated to the product based on the product mass as a fraction of the total facility production.

The furniture product includes recycled materials, which are allocated using the recycled content allocation method (also known as the 100-0 cut off method). Using the recycled content allocation approach, system inputs with recycled content do not receive any burden from the previous life cycle other than reprocessing of the waste material. At end of life, materials which are recycled leave the system boundaries with no additional burden.

Impacts from transportation were allocated based on the mass of material and distance transported.

System Boundaries

The system boundaries of the life cycle assessment for the office tables was cradle-to-grave. A description of the system boundaries for this EPD are as follows:

- Raw Material Extraction and Processing stage This stage includes extraction of virgin materials and reclamation of non-virgin feedstock. This includes the extraction of all raw materials, including the transport to the manufacturing site. Resource use and emissions associated with both the extraction of the raw materials used in the tables, as well as those associated with the processing of raw materials and table component manufacturing are included. Impacts associated with the transport of the processed raw materials to manufacturing facilities (upstream transport) are also included in this stage.
- Core Production stage This stage includes all the relevant manufacturing processes and flows, excluding
 production of capital goods, infrastructure, production of manufacturing equipment, and personnel-related
 activities. This stage includes the impacts from energy use and emissions associated with the processes
 occurring at Bonduel, WI facility, as well as the production of the product packaging materials.
- Downstream
 - Distribution, Storage and Use stage This stage includes the delivery of the KI Tables to the point of use (downstream transportation), storage of the product and maintenance of the table for a period of 10 years.
 - Disposal stage The end-of-life stage includes transport of the table to material reclamation or waste treatment facilities. Emissions from disposal of table components in a landfill or from incineration are included. Packaging disposal is also included in this phase.

Cut-off criteria

According to the PCR, cumulative omitted mass or energy flows within the product boundary shall not exceed 5%. In the present study, except as noted, all known materials and processes were included in the life cycle inventory.

REFERENCES

- 1. Product Category Rule for Furniture, Except Seats and Mattresses Product Group Classification: UN CPC Codes 3812/3813/3814. International EPD® System. 2012:19. Version 2.01. August 2019.
- 2. CEN (2013), EN 15804:2012+A1:2013, Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- 3. ISO 21930:2017 Sustainability in buildings and civil engineering works Core rules for environmental product declarations of construction products and services.
- 4. ISO 14025:2006 Environmental labels and declarations Type III environmental declarations Principles and ISO procedures
- 5. 14040: 2006 Environmental Management Life cycle assessment Principles and framework
- 6. ISO 14044: 2006/AMD 1:2017/ AMD 2:2020 Environmental Management Life cycle assessment Requirements and Guidelines.
- 7. CML 4.1 baseline, from Institute of Environmental Sciences Faculty of Science University of Leiden, Netherlands.
- Rosenbaum (2008). Rosenbaum, R.K., Bachmann, T.M., Gold, L.S. et al. USEtox the UNEP-SETAC toxicity model: recommended characterisation factors for human toxicity and freshwater ecotoxicity in life cycle impact assessment. Int J Life Cycle Assess (2008) 13: 532. doi:10.1007/s11367-008-0038-4. USEtox version 2.02.
- ReCiPe Mid/Endpoint method, version 1.13 November 2016. https://sites.google.com/site/lciarecipe/characterisation-and-normalisation-factors
- 10. Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts (TRACI). Dr. Bare, J., <u>https://www.epa.gov/chemical-research/tool-reduction-and-assessment-chemicals-and-other-environmental-impacts-tracix</u>5.5. American National Standard for Office Furnishings – Desk Products – Tests. 2014.
- 11. Ecoinvent Centre (2021) Ecoinvent data from v3.8. Swiss Center for Life Cycle Inventories, Dubendorf, 2021, http://www.ecoinvent.org
- 12. SCS Global Services. Life Cycle Assessment of KI Office Tables. July 2022. Final Report. Prepared for KI.
- 13. SCS Type III Environmental Declaration Program: Program Operator Manual. V11.0 November 2021. SCS Global Services
- US EPA. Advancing Sustainable Materials Management:2018 Fact Sheet Assessing Trends in Materials Generation and Management in the United States. November 2020. <u>https://www.epa.gov/sites/production/files/2020-11/documents/2018 ff fact sheet.pdf.</u>
- US EPA. WARM Model Transportation Research Draft. Memorandum from ICF Consulting to United States Environmental Protection Agency. September 7, 2004. <u>http://epa.gov/epawaste/conserve/tools/warm/SWMGHGreport.html#background</u>.

For more information contact:

Furnishing Knowledge®

KI 1330 Bellevue Street, Green Bay, WI 800.424.2432 | www.ki.com | info@ki.cm

SCS Global Services 2000 Powell Street, Ste. 600, Emeryville, CA 94608 USA Main +1.50.452.8000 | fax +1.510.452.8001

© 2022 SCSglobalServices.com